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1. INTRODUCTION

Consider the operator equation
u=F(,u), (1.1)

where F: R¥ X E¥ - E* is a completely continuous mapping, k> 1, and E is
a real Banach space. Assume that F has the form

F,u)=A)u + HQA, u), (1.2)
where

ko [48 - AR
AV =X ;| : : (1.3)
=LA Al
Here u= [ty 24]Ts 2= A1sAdrperdy)y AD:E—E is a compact linear
operator, and H(A, u)/||u]| — O uniformly for A contained in compact subsets
of R*.

If k=1, (1.1)~(1.3) is an operator equation widely studied in bifurcation
theory (see, e.g., work of Crandall and Rabinowitz [6], Krasnosel’skii [9],
Rabinowitz [13, 14], Schmitt and Smith [15], and Turner [18]) via the
topological degree of Leray and Schauder. The case k> 1 has recently
attracted considerable mathematical attention. For example, equations of or
similar to the form (1.1)-(1.3) have appeared in connection with
multiparameter generalizations of nonlinear Sturm—-Liouville boundary value
problems in papers of Browne and Sleeman {2, 3] and in connection with
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three point boundary value problems in second-order ordinary differential
equations in a recent paper of Hale [7].

The purpose of this paper is to examine Egs. (1.1)}-(1.3) for k> 1 by
means of the Leray-Schauder topological degree. To this end, in Section 2,
we establish an analogue to the Krasnosel’skii bifurcation theorem [9] for
higher dimensional parameter spaces and note some of the topological conse-

quences of this theorem in the case k > 1. Two global results also appear in

Section 2. The first of these results is a multiparameter version of the
Rabinowitz bifurcation theorem [14]. The second establishes three global
possibilities in case the set of bifurcation points in parameter space contains
a compact connected subset which separates R* into two components.
Section 3 examines a strongly coupled system of Sturm-Liouville boundary
value problems which illustrates this three alternative theorem. Finally, in
Section 4, we consider a system which has its origin in a study of axisym-
_metric buckling of spheres made by Bauer, Reiss, and Keller [1].

2. LocaL AND GLOBAL BIFURCATION RESULTS

Consider the operator equations (1.1)-(1.3). We will call a point
(A9, 0) € R* X E* a bifurcation point for (1.1}-(1.3) provided that every
open set in R* X E¥ containing (1,,0) also contains a point (4, u), with
u =0, such that (4, u) satisfies (1.1)}~(1.3). Let & and X, denote, respec-
tively, the sets {1 € R*:(4,0) is a bifurcation point for (1.1)}-(1.3)} and
{A€R¥*: A= (4,,.., A;) is such that the null space N(I —A(1))# {0}}. Then
% and X are closed in R¥, and 2<% ,.

This last statement gives a necessary condition for bifurcation to occur in
the setting of (1.1)}-(1.3). We now present a result which establishes a
sufficient condition in this respect. First, observe that if A € X, then the
algebraic multiplicity of A, denoted mult 4, is the dimension of the subspace

2. N{(I—A()Y} of EF.

THEOREM 2.1. Let Ay € X, have odd algebraic multiplicity. Then (4,,0)
is a bifurcation point for (1.1}-(1.3).

Proof. Observe that (1.3) guarantees a change in the topological index
(see [10]) of I—A(L) at A, through the ray emanating from 0. The result
may then be verified using the topological degree of Leray—Schauder [10] in
a manner similar to that of [9].

Theorem 2.1 has several immediate consequences.

COROLLARY 2.2. Suppose A, is as in the statement of Theorem 2.1. Then
R*\ X, is not connected.
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Proof. There exists 4,,4, € R*\ X, such that 0, 4,, 4,, 4, are collinear
and 1, is the only element of X, on the line segment joining A, and 4,. If
R*\Z, is not connected, since X, is closed in R¥, R*\ X, is path connected.
There is then a path A: [0, 1] —» R*\ X, such that A(0)=A4, and A(1)=2,.
Define M(¢) by M(t)x =x — A(h(¢))x for (x,t) € E* X [0, 1]. Then, since
M(t)x=0 only if x=0, the homotopy property of the Leray—Schauder
degree  implies that deg,((I—A4(@,), B(0,1),0)=deg (/—A4(1,),
B(0, 1), 0), where B(0, 1) is the unit ball in E¥, a contradiction.

Corollary 2.2 shows that if A € X, has odd algebraic multiplicity, then X
has codimension 1 in R*. The next result indicates that often a surface of
bifurcation points exists about a point 1 € X, with mult A an odd integer.

CoroLLARY 2.3. If A,€ X, is as in Theorem 2.1 and X, is a k~—1
nonsingular manifold T at A, then T < B.

Proof. The hypotheses guarantee the existence of d > 0 such that, for all
A € T sufficiently close to 4,, (1 + §) € R¥\ X, and A is the only element of
X, on the line segment connecting (1 —J)A and (1 + 6)A. The result then
follows from the homotopy invariance of the Leray-Schauder topological
degree.

The preceding results are obtained in situations other than (1.1)-(1.3). For
example, if, in (1.3), operator 4 is the zero operator for m=n and
H@A, u) = (H,QA, t)ys H (A, uy)), where u = (uy,..., 4;), then the real Banach
space E* may be replaced by E, X --- X E,, where E;, i=1,2,.., k, is a real
Banach space and E; and E; are not necessarily the same space if i, i,j =
1, 2,..., k. Such situations arise in the study of systems of ordinary differential
equations. In fact, in [4], we present a nonlinear boundary value problem
based on Klein’s oscillation theorem whose solution makes use of Theorem
2.1 in this setting.

Let 1,€ X,. Suppose #: R— R* is a line such that A(0)=21,. A unit
vector u, in the direction of & (we assume that if € R is such that | A(7)]| =
min, g | 2(2)], then 7 < 0) is a direction of changing degree at A if the
following conditions hold:

(i) there is a number &, >0 such that deg,((M(¢), B(0,1), 0) is
defined for all ¢ such that |¢| < ¢, and ¢+ 0.

(i) deg,s(M(z), B(0, 1), 0) = sgn(zf) - deg, s(M(B), B(0, 1), 0) for all
T, € (—&y, &), T#0, f5£0.

Let &~ denote the closure in R* X E* of the set {(4, u) € R* X E*: (A, u) is
a solution of (1.1)~(1.3) and u # 0}. Let a continuum in % denote a closed
connected subset. We then have
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TuEOREM 2.4. Consider (1.1)-(1.3). Suppose A, €Z, and u, is a
direction of changing degree at A,. Then there exists a subcontinuum % of
& meeting (A, 0) such that either

(i) & is unbounded, or
(i) ZO (2 X {0}]\ {4, 0)}) # 2.

Proof. Let t€R and u € E*. Define operators G: R X E*¥ - E* and 4(¢):
E¥~ EX by

G(t, u)=F(h(t), u)
and
A=A

Since F and A are completely continuous and compact linear, respectively,
the same is true for G and A(#). Since A(¢) is the linearization of G(¢, -) and
dim U, ; N{(/ —A4(0))"} is odd the proof of the Rabinowitz bifurcation
theorem [14, Theorem 1.3] can be utilized in this situation. Thus if &
denotes the closure in R X EX of {(t,u) € R X E*: u= G(t, u), u # 0}, there
is a maximal subcontinuum of .%” containing (0,0) which is either
unbounded or meets (¢,, 0), £, # 0.

COROLLARY 2.5. Let % denote the maximal continuum of & meeting
(A9,0), where A, is as in Theorem 2.4. Then for each direction u, of
changing degree at A there is a subcontinuum %, of € such that

(i) @, satisfies the alternatives of Theorem 2.4, and
(ii) the projection of %,, n(%,) into R* is contained in h(R).

Remark 2.6. While Corollary 2.5 is a global result, it also gives infor-
mation about the local behavior of solutions emanating from the bifurcation
point (4,, 0). For example, suppose there is a direction u, of changing degree
at A, such 7(%,) # {4,}. Then we may assert that 7(%,.) # {4,} for directions
u,. of changing degree at 1, in a cone about 4. This fact is a consequence of
a readily established extension of Theorem 2.4 to more general types of
paths. In particular, if we view the problem R*X R* (allowing R* to
represent the norm of an element in E k), we find that k-dimensional
“surfaces” of nontrivial solutions appear. Thus the bifurcation phenomena
associated with such situations are locally “higher dimensional.”

Theorem 2.4 adapts the Rabinowitz bifurcation theorem to the situation of
(1.1)~(1.3). In a sense, it also characterizes the structure of the nontrivial
solutions to (1.1)~(1.3) emanating from a single bifurcation point of odd
multiplicity. However, in the case of higher dimensional parameter spaces,
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one often has “surfaces” (or collections of “surfaces”) of bifurcation points
in parameter space. (These surfaces, as illustrated in [5], exhibit a wide
variety of structural possibilities.) A natural question arises: can one give a
description of the continuum of nontrivial solutions to (1.1)}-(1:3) which
emanate from a surface of bifurcation points? The next theorem is intended
as a partial answer to this question.

THEOREM 2.7. Consider (1.1)~(1.3). Let Z< X, have the following
properties:

(a) multl is odd for all 1 € Z,
(b) Z is compact and connected,

() R*\Z=0U @, where Q and © are open disjoint connected sets
with §2 bounded and Z = 042,

(d) if V is any open subset of 2 such that V < Q then there is a point
x € V such that x can be joined to Z by a line segment entirely contained in
Q,

(e) there is a neighborhood I of Z in R* such that I'nx, =2, in
particular, oI "X = @.

Then if € = {C:C is a subcontinuum of S meeting Z X {0}}, one of the
JSollowing holds:

(i) K=cewC is unbounded.
(i) There is C € Z such that C meets (R*\Z) X {0}.

(iii) For all A€ Q there is C €% such that C meets (A, e) for some
e€ EX e+0.

Remark 2.8. The proof of this result is modelled after the proof of the
Rabinowitz bifurcation theorem [14, Theorem 2.3]. However, technical
difficulties appear here that are not present in the aforementioned proof. In
order to circumvent these difficulties, the lemmas which follow are needed.
The proof then follows readily in light of [14] and is omitted. As in [14] one
may verify

LEMMA 2.9. Assume neither (i) nor (ii) of Theorem 2.7 hold. Then if K,
Z, and T are as in the statement of Theorem 2.7 there is a bounded open set
@ in R* X E* such that

(a) K<,
(b) o8N ==@, and

(¢) if 0<e<dist(dl,Z), & can be chosen so that & contains no
trivial solutions of (1.1)~(1.3) other than those in an & neighborhood of Z.
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LeEmMA 2.10. Suppose (i)-(iii) of Theorem 2.7 do not hold. Then if Q is
as in the statement of Theorem 2.7, there is a neighborhood V contained in 2
such that VK g = @, where Ko = {4 € #*: (1, €) € K for some e € E¥}.

Proof. Since (ii) and (iii) do not hold, there exist A € £ such that for any
subcontinuum C € Z, C N ({4} X E*) = @. Then A € K . Otherwise, there is
a sequence {A,}%2, < Kg such that A,—1 in R* Then there exists a
sequence {e,}= ,<EX e,#0, such that (1,,e,) € C, for some subcon-
tinuum C,. Thus e, = F(1,, ¢,). Since (i} does not hold, {e,};>, is bounded
in EX. The complete continuity of operator F implies there is a subsequence
of {e,}®_, (which we relabel if necessary) and an element e € E* such that
e,—e. Thus e=F(l, e). Hence, since (,e) € (Z X {0}) Us~, C,, we have
A € Kgi, a contradiction. Thus 1 & K—m and there is a neighborhood V of 4
such that VN K= @.

A modification of the construction of set ¢ in Lemma 2.9 (cf. [14]) along
the lines of Lemma 2.10 establishes the following result.

Lemma 2.11.  If (i)-(iii) of Theorem 2.7 do not hold and 2 is as in the
statement of Theorem 2.7 then the open set & of Lemma 2.9 may be chosen
so that there is a neighborhood V' < Q such that @ N ({1} X E*) =@ for all
rAev.

3. A StrRoNGLY COUPLED NONLINEAR
STURM-LIOUVILLE SYSTEM

In this section we consider a problem from ordinary differential equations
which illustrates Theorem 2.7. Let [a,b] be a closed real interval and
consider the system of equations

Lu(t) = (A + u) u(t) — 2p0(t) + N\t 4, p, u(t), v(2)),

3.1
Loty = Au(t) — (A + ) v(t) + No(t, A, 1, u(z), v(1)), 3.

where 1, y are real parametrs and ¢ € [a, b]. Assume the following conditions
are satisfied:

(i) Lx=-—(px")' + gx, where p is continuously differentiable and
positive and g is continuous on [a, b].

(ii) u and v are subject to the boundary conditions
ax(a) + a'x'(a) =0,
Bx(b) + B'x'(b) =0,
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where

(al+|a' DBl +16]) > 0.

(iii) Nt A,u,x,y) is continuous and also o(|x|+|y|) uniformly for
t € [a,b] and (4, 1) contained in compact subsets of R?, fori=1,2.

Assume now that 0 is not an eigenvalue for L subject to boundary
conditions (ii). Then if G is the Green’s function associated with same, (3.1)
is equivalent to

b b
u(t) = (A + 1) j G(t, 5) u(s) ds — 2u j G(t, s) v(s) ds

4 [ 69 N6 2ot ), 6))
‘ (3.2)
] b
v(t) =2 j G(t, s) u(s) ds — (A + 1) f G(t, s) v(s) ds

+ j " Gl 5) Ny(s, Ay g, u(s), v(s)) ds.

Since the map x— [2 G(-, s) x(s) ds is a compact linear operator on the real
Banach space E given as the subspace of those elements of C'[a, b]
satisfying boundary conditions (ii), R? X E* is an appropriate setting in
which to discuss the bifurcation phenomena associated with (3.1). In fact,
(3.2) can be expressed in the form

u A 0 u A 24|l u ]\”l(l, U, U, V)
= , (3.3
I I PR [ 0 g | 4 S P B
where A: E — E is given by
b
Ax(t) = j G(t, 5) x(s) ds,
and N;: R? X E> - E is given by
b
Nists 6 9)O = | Gt 5) Ni(ss ho o X(1 (@) ds, i=1,2.

We note that by condition (iii), (3.3) is a special case of (1.1)~(1.3).
Hence, the set {(A,x) € R?*: (4,4, 0,0) is a bifurcation point for (3.1)} is
contained in the set



46 ROBERT STEPHEN CANTRELL

so=femer[T]=[1[3 S]e[5 ZILE)

.. . u .
has a nontrivial solution [ ] in E?
v

Note that the equation defining X, is equivalent to the system

Lu = (A + u)u — 2uv,

Lyv=Au— A+ v, G4

u and v subject to the given boundary conditions (ii). If (3.4) has a
nontrivial solution [¥], then » and v can be shown to solve

v

(L + 22+ )L — /A +u*)x=0. (3.5)
It is well known that L has a discrete sequence of simple eigenvalues
A <Ay <Ay < e <Ay— +o0.

It can thus be shown that ¥, = {(A,p): A2+ x> =212, n=1,2,..}; X is thus
an infinite collection of concentric circles centered at the origin.

Theorem 2.1 guarantees that elements of £, of odd algebraic multiplicity
are bifurcation points. Suppose that (4, x) is such that A> 4+ x> =12 and that
there does not exist m# n € Z* with 4,, + 4, = 0. Let x,, be an eigenfunction
for L and boundary conditions (ii) associated with 4,. (Recall that x, has
n — 1 simple zeros in (a, b)). Since u and v solve (3.5), it must be the case
that u = ax, and v = fix,,. Then (3.4) yields

A, O a B A+u —2u ][a]

s 2 llp]==1"3" —arwllsl= oo
Then (3.6) has a nontrivial solution with = ((A, — (4 +u)/—2u)a if 4 # 0,
B=4a if Au)=(1,,0), and a=0 if A,u)=(-4,,0). So (4, u) has

geometric multiplicity 1.
Assume for the moment that A =4, and z = 0. In this case, the equation

[L_glﬂl) ’L+:(Zf1[+ﬂ)]2 [Z]=[g] 3.7)
implies
R P I CE

e =

Temmi

MULTIPARAMETER BIFURCATION PROBLEMS 47

where @ € R. Since L + 4, is invertible, (3.8) reduces to

(L — A u=2wx,, (L —A)v=0wx,.

Hence w = 0. It now follows that the algebraic multiplicity at (4,, 0) is 1. By
the homotopy invariance of the Leray—Schauder degree, the algebraic
multiplicity at (1, #) is odd for each (1,4) such that A*> + u*> =A%. We have
established the following result.

THEOREM 3.1. If 4, is an eigenvalue of L and boundary conditions (ii)
such that A, + A, # 0 for all m € Z*, then the set {(A,1): A + > =A}} € 2.

Theorem 2.7 is applicable to (3.1). We now consider the nontrivial
solutions to (3.1) that emerge from X,. We first make the following obser-
vation.

PrOPOSITION 3.2. Consider the linearization (3.4) of (3.1) and suppose
that A* + u* =A%, as in Theorem 3.1. Then the following hold:

(i) if u=0 then either v=0 or (A, u) = (—4,,0).
(ii) if v=0 then either u=0 or (A, u)= (0, 4,).

THEOREM 3.3. Suppose (Ag,iy) € Z,, A2 +ui=A%L, where A, is as in
Theorem 3.1. There is a “two-dimensional” (in the sense of Remark 2.6)
continuum %Ay, 1t,) emerging in R? X E? from (A, 19, 0,0). If (A, &) #
(—A,,0) or (0,A,) then, at least locally, all nontrivial solutions (4, i, u, v) in
F (Lo, Uo) are such that u and v have n— 1 simple zeros in (a, b).

Proof. The result follows readily from Corollary 2.5 and Proposition 3.2.

There are three (not necessarily mutually exclusive) alternatives put
forward in Theorem 2.7. It would be desirable to use nodal properties of
solutions to (3.1) (as in [6, 14, 15,18]) to eliminate alternative (ii) of
Theorem 2.7 (i.e., continua emerging from {(A,x): A> +u* =A%} X {(0, 0)}
meet {(,4): A2 +p? =212} X {0,0}, where m=n). Unfortunately, one
cannot guarantee that the zeros of a solution pair (u,v) are always simple
and have the same nodal type. Thus the following theorem appears to be as
strong as is possible, in general.

THEOREM 3.4. Suppose that the nontrivial solutions (A, u,u,v) of (3.1)
have the following property: (i) either u and v’ have the same number of
simple zeros with no double zeros, or (ii) either u or v is zero. Then alter-

. native (ii) of Theorem 2.7 does not hold.

Progf. The Schmitt—Smith lemma [15, Theorem 2.5], suitably extended
to the situation of Theorem 2.7, can be utilized to verify this result.
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We conclude this section with the following simple result.

THEOREM 3.5. Solution  continua  for (3.1) emanating from
{A* + 1> =22} X {(0,0)}, where A, is as in Theorem 3.1, have unbounded
A—v components provided N,(t, A, u,0, y)=0 and unbounded u-—u
components if N,(t, A, 4, x, 0) = 0, where N, and N, are as in assumption (iii)

“of (3.1).

Proof. If Ny(t,2,4,0,y)=0, we may apply the results of [6] to the
reduced system obtained by setting #=0 and =0, and analogously for
Nyt A, ¢, x,0)=0. '

4. FrRoM A MODEL FOR
THE AXISYMMETRIC BUCKLING OF THIN SPHERES

In [1], Bauer, Reiss, and Keller discuss a mathematical model for the
axisymmetric buckling of hollow spheres and hemispheres. In that paper,
they derive a system of nonlinear second-order differential equations. It is
our purpose in this chapter to consider the bifurcation phenomena associated
with a similar system in which the nonlinearity has been altered. Precisely,
we consider the system

Ly, +vw,=-p,—N\(P,K,y,, V1)
2 4.1)
(““PYz +y] +N2(P1K,yp}’z)),

K

Ly, —w,=

where L is the differential operator given by

d df x?
L T o 2 Eeanall B .
/ dx ((1 x)dx) l—xzf; (4.2)
subject to the boundary conditions
&) =0, 43)

for i=1,2, x=~1, 1. We also assume that P and K are positive parameters
and that v is a constant with value strictly between O and 1; N, is to be
viewed as an operator acting continuously between R* X R* X (L*[~1, 1])?
and L*[—I, 1] and satisfying NP, K,»,,,) =0(”()’13yz)“)(1,2[—1.1])2
uniformly for (P, K) in compact subsets of Rt X R+,

From (4.2), Lf may be expressed as (d/dx)((1—x?) df/dx)—
(1/(1 —x*))f+f. The operator given by f- (d/dx)((1—x?) df/dx)—
(1/(1 — x*))f is called the associated Legendre differential operator of order

’
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1. It is well known [8, 11, 16, 17] that this operator along with boundary
conditions (4.3) is a densely defined operator on L*[—1, 1] with eigenvalues
—n(n + 1) and eigenfunctions p, = P} = (1 — x?)"/? (dP, /dx), where P, is the
nth Legendre polynomial of mathematical physics; P. is called the
associated Legendre polynomial of degree n and order 1. It has n — 1 simple
zeros in (—I1, 1). Furthermore, {p,} >, forms a complete orthonormal basis
for the real Hilbert space %*[—1, 1]. Hence —L and boundary conditions
(4.3) have eigenvalues A, =n(n+ 1) — 1 with corresponding eigenfunctions
p,- One may readily see then that the operator L subject to (4.3) has a
closed extension L on &?[—1,1] and L has compact inverse S on
&£*[~1, 1]. Thus (4.1)-(4.3) is equivalent to

215 2|t mon |

K K

N(P,K,»,,,)
}, 4.4)

T 0
+[0 TJ[:‘(—Ikiﬁ)“Nz(RKsJ’nJ’z)

where T'=—S. Then (4.4) is a variation of (1.1)~(1.3).
Observe now that the linearization of (4.4) is given by

T T
Bl]z [:—(%v—z)z- ——vT+—II%(1 —vZ)T] [ﬂ 45)

Theorem 2.1 may be used to determine that elements of X, which are
algebraically simple are bifurcation points for (4.1)-(4.3). Equation (4.5) is
equivalent to

=Ly, =vwy, +¥,,
— (=) P(1—v?) (4.6)
“hE—p it (T ) e

Equation (4.6) has nontrivial solution [}!] subject to (4.3) only if y, and y,
satisfy

(—L —c+d)(—L —c —d)x =0, 4.7)

where c¢=P(1 —v?)/2K and d=+/(v— (P(1 —v})/2K)* — ((1 — v>)/K).
Then by (4.7) we have that ¢ + d = 4, for some positive integer n. Hence X,
is the collection of rays {(P,K)ER* XR*:P=((4,+v)/(1 —v))K +
(1/(A, —v)), n=1, 2,...}. Furthermore, it can be shown that all points (P, K)
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of X, are algebraically simple except the countable number points, at which
two rays in the collection intersect. In fact, solutions to (4.5) for such

(P,K)E X, are of the form [3}!]=w[j]p,, where a and f are constants

depending only on (P, K). It follows that “small” solutions to (4.4) inherit
the nodal structure of p,. Since Z is necessarily closed, we may summarize
as follows:

TueoreM 4.2. In the setting of (4.4), Z=2%,={(P,K):P >0, K>0,
P=((, +v)/(1 —v))K + (1/(A,—v)), n=1,2,..}. Furthermore, if
(Po,K) EZ, with mult(Py,Ko)=1 and Po=({A,+ /(1 —v?)) Ko+
(1/(A, —v)), then locally solution pairs [31] for (4.4) are such that y; has
n— 1 simple zeros in (—1, 1), i=1,2.

REFERENCES

1. L. BAUER, E. L. Reiss, aND H. B. KELLER, Axisymmetric buckling of hollow spheres and
hemispheres, Comm. Pure Appl. Math. 23 (1970), 529-568.

2. P. J. BROWNE AND B. D. SLEEMAN, Nonlinear multiparameter eigenvalue problems for
ordinary differential equations, preprint.

3. P. J. BROWNE AND B. D. SLEEMAN, Nonlinear multiparameter Sturm~Liouville problems,
J. Differential Equations 34 (1979), 139-146.

4. R. S. CANTRELL, Multiparameter bifurcation problems for second order ordinary
differential equations, Rocky Mountain J. Math. 12 (1982), 795-806.

5. R. S. CANTRELL, “Multiparameter Bifurcation Problems: A Degree Theoretic Approach,”
Ph.D. thesis, University of Utah, 1981. )

6. M. G. CRaNDALL AND P. H. RasiNnowrrz, Nonlinear Sturm~Liouville eigenvalue
problems and topological degree, J. Math. Mech. 19 (1970), 1083-1102.

7. 1. K. HALE, Bifurcation from simple eigenvalues for several parameter families, Nonlinear
Anal. 2 (1978), 491-497.

8. H. HocusTADT, “The Functions of Mathematical Physics,” Pure and Applied
Mathematics, Vol. 28, Wiley—Interscience, New York, 1971.

9. M. A. KrasnosevL’skl, “Topological Methods in the Theory of Nonlinear Integrai
Equations,” Macmillan Co., New York, 1965.

10. J. LERAY AND J. ScHAUDER, Topologie et équations fonctionelles, Ann. Sci. Ecole Norm
Sup. (3) 51 (1934), 45-78.

11. T. M. MACROBERT, “Spherical Harmonics,” 2nd ed., Dover, New York, 1948.

12. J. MawsiN, “Topological Degree Methods in Nonlinear Boundary Value Problems,”
Conference Board of the Mathematical Sciences Regional Conference Series in
Mathematics, Vol. 40, Amer. Math. Soc., Providence, R.I, 1979.

13. P. H. RaBiNowrTz, Nonlinear Sturm-Liouville problems for second order ordinary
differential equations, Comm. Pure Appl. Math. 23 (1970), 939-961.

14. P. H. RasiNowrrz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal.
7 (1971), 487-513.

15. K. ScuMITT AND H. L. SmitH, On eigenvalue problems for nondifferentiable mappings, J.

Differential Equations 33 (1979), 294-319.
)

MULTIPARAMETER BIFURCATION PROBLEMS 51

16. I. STAKGOLD, “Boundary Value Problems of Mathematical Physics,” Vol. 2, Macmillan
Co., New York, 1968.

17. E. C. TircuMARsH, “Eigenfunction Expansions Associated with Second-Order
Differential Equations,” Vol. 1, Oxford Univ. Press, Oxford/London/New York, 1946.

18. R. E. L. TURNER, Nonlinear Sturm-Liouville problems, J. Differential Equations 10
(1971), 141-146.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium



